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An improved procedure for solving asymptotic equations

M R H Rudge† and D M Tiernan‡§
Department of Applied Mathematics and Theoretical Physics, The Queens University of Belfast,
Belfast BT7 1NN, UK

Received 28 August 1996, in final form 28 November 1996

Abstract. In a previous publication a method was described for solving the close-coupling
equations that arise in the non-relativistic scattering theory in the asymptotic region where
the scattered particle is far removed from the residual atom, ion or molecule. In this paper
an improved numerical procedure, based on an algorithm for solving the Sylvester problem,
is described whereby a large set of such equations may be solved without incurring storage
problems. Some typical results are presented that indicate the accuracy of the method and make
comparisons with the results obtained from two other codes.

1. Introduction

In a previous publication (Rudge and Tiernan 1994) we described a numerical procedure
for solving the coupled differential equations that arise in scattering excitation calculations
in the asymptotic region defined as that region wherein only the long ranger−n coupling
between the scattering channels is significant. The form of these equations, below break-
up thresholds, is the same for the collision of a charged particle with atomic, ionic or
molecular species and obtaining accurate numerical solutions to them is a significant part
of the corresponding full scattering calculation. The method previously described was a
simple one in which the problem was reduced to solving linear equations and was shown to
be capable of high accuracy. It also generated an analytic form for the solutions which may
be of value, for example, in calculating transition probabilities. The principal disadvantage
of the method however is that the amount of computer storage required becomes a limiting
feature as the number of channels becomes large. It is the purpose of the present paper to
address this problem. We show that the equations can be reformulated in such a way that
storage requirements are greatly reduced and then solved using theQZ algorithm of Moler
and Stewart (1973). We thereby achieve two complementary schemes. In the first, where the
number of channels is small enough to pose no storage problem, the method is formulated
through a non-iterative solution of linear equations. The second scheme described here is
used for large problems and uses an iterative numerical solution. Some typical problems
addressed by other authors have been used to test the procedures.
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2. The scattering equations

Let

L0 = diag

(
d2

dr2
+ k2

j

)
(1)

and

V =
Nλ∑
λ=1

r−λvλ (2)

where ifN is the number of channels thenvλ areN×N matrices. The asymptotic equations
to be solved are

LF = (L0+ V)F = 0. (3)

For excitation problems the matrixv1 is simply a multiple of the unit matrix but we have
chosen to generalize the equations so thatv1 = diag(zj ) and defineηj = zj k−1

j . On writing

θj = kj r − j̀ π

2
+ ηj ln(2kj r)+ arg0( j̀ + 1− iηj ) (4)

we can determine blocks of solution vectors,Fj , such that

[F2+ iF1]jk ∼
r→∞ δjk

[
k
− 1

2
j exp(iθj )

]
(5)

for 1 6 j 6 N and 16 k 6 No, whereNo is the number of open channels (for which
k2
j > 0). We can also obtainNc = N −No closed channel solution vectors specified by

[F3]jk ∼
r→∞ δjk[exp(−kj r + ηj ln(r))] (6)

for 1 6 j 6 N and 16 k 6 Nc wherekj =
∣∣∣k2
j

∣∣∣ 1
2
. In total there are thusNs = 2No + Nc

solution vectors

F = [F1F2F3] (7)

that satisfy (3), where the firstNo columns are ‘sine-like’, the nextNo columns are ‘cosine-
like’ and the lastNc channels are exponentially decreasing. It can be shown from the
symmetry ofV that the Wronskian matrix is

W = F̃F ′ − F̃ ′F =
[ 0 −I 0

I 0 0
0 0 0

]
. (8)

In practice it is convenient to develop 2No solutions in the rangeRcl 6 r 6 R∞ whereRcl
is a radius at which the exponentially decreasing terms become significant. Atr = Rcl the
Wronskian condition implies that[−F̃ ′1 F̃1

−F̃ ′2 F̃2

] [
F3

F ′3

]
= [ 0 ] (9)

and that

F̃3F ′3− F̃ ′3F3 = 0 (10)

which allows us to selectNc exponentially decreasing starting solutions.
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3. The computational procedure

We can represent any one of the solution vectors,f , in the rangeR1 6 r 6 R2 by
interpolation in a basisϕ of sizeNf as

f = Xϕ (11)

wheref is N×1 andϕ is Nf ×1 andX is anN×Nf matrix of coefficients. Equation (11)
is the point of departure from our previous representation (equation (18) of Rudge and
Tiernan, 1994)). TheNs solutions of the form (11) then comprise the columns ofF . In
the collocation procedure the equationL F = 0 is satisfied over a discrete set of pointsrj ,
16 j 6 Np that lie in the range. Whilst defining

Φ = [ϕ(r1) · · ·ϕ(rNp )] (12)

we see that the collocation equations are

XΦ′′ + KXΦ+
Nλ∑
λ=1

vλXΦDλ = 0 (13)

whereK = diag(k2
j ) andDλ = [diag(r−λj )]. The boundary conditions are

XΦ(R2) = f(R2)

XΦ′(R2) = f ′(R2)
(14)

wheref(R2) andf ′(R2) are known. Now ifNp = Nf − 2 and we redefine

Φ′′ = [Φ′′|ϕ(R2)ϕ
′(R2)] (15)

Φ = [Φ|0 0] (16)

Φλ = Φ[Dλ|0 0] (17)

then (13) and the boundary conditions (14) can be rewritten in the form

A1XB̃1+ A2XB̃2 = C(X) (18)

where

A1 = I B1 = Φ̃′′ A2 = K B 2 = Φ̃ (19)

and

C(X) =
[
−

Nλ∑
λ=1

vλXΦDλ

∣∣∣∣f(R2)f
′(R2)

]
. (20)

Equations (18) are of the so-called Sylvester form (Sylvester 1884), and the Sylvester
problem is to solve (18) forX given a fixed matrixC. It can be seen that we need to store
the matricesAj which areN × N and the matricesBj which areNf × Nf . The previous
method, on the other hand, required the storage of a matrix of at least(Nf ×N)2. For a 20
channel case in which typicallyNf ≈ 200, it can be seen that a major storage problem has
been alleviated. Our previous method may be obtained if the elements ofX are written as
the components of a column vector. If storage permits there is an advantage in doing this
because allNs solutions can be obtained in one operation without iteration. On the other
hand, sinceC depends onX, it is necessary to solve (18) iteratively and a separate iteration
must be performed for each channel. We have therefore sought to rewrite (18) in such a
way that the iterations converge rapidly. We write

vλ = [vλ − αλI ] + αλI Dλ = [Dλ − βλI ] + βλI (21)
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and we again obtain equations (18) but now where

A1 = I B̃1 = Φ′′ +
Nλ∑
λ=1

αλΦDλ (22)

A2 = K +
Nλ∑
λ=1

βλ(vλ − αλI) B̃2 = Φ (23)

and

C(X) =
[
−

Nλ∑
λ=1

[vλ − αλI ]XΦ[Dλ − βλI ]

∣∣∣∣f(R2)f
′(R2)

]
. (24)

We have chosen the parametersβλ as

βλ = R−λ R = 1
2(R1+ R2). (25)

The speed of convergence was not found to depend strongly on this particular choice of
these parameters though there is a gain in efficiency through their use. In solving for
solutionfj we chose

αλ = (vλ)jj . (26)

The equations may be simplified by diagonalizing the real symmetric matrixA2

A2 = SΛS̃ SS̃ = I (27)

giving

S̃XB̃1+ΛS̃XB̃2 = S̃C. (28)

Using theQZ algorithm (cf Moler and Stewart 1973, Gardineret al 1992a) we can write

B̃1 = QTZ̃ and B̃2 = QV Z̃ (29)

whereQQ̃ = ZZ̃ = I , T is upper-triangular andV is quasi upper-triangular. We have
used the package of Gardineret al (1992b) to perform this. We may note that step (29)
is expedited by choosing to solve equations (18) in their transposed form which makes the
dimension of the matrices involved as small as possible. The equations become

YT +ΛYV = G (30)

whereY = S̃XQ, G = S̃CZ and are solved by the iteration

YnT +ΛYnV = G(Yn−1). (31)

The structure ofT andV makes the rapid solution of (31) possible (Gardineret al 1992a).
In order to start the iteration we need

[f f ′] = X[ϕϕ′] (32)

where againf is one of theNs = 2No + Nc linearly independent solution vectors of
dimensionN evaluated at the start radius. Hence[

ϕ̃
ϕ̃′

]
X̃ =

[
f̃
f̃ ′

]
(33)

wheref andf ′ are known.
For each right-hand side column we have two equations inNf unknowns and it follows

that (Nf − 2) of the corresponding column of̃X can be chosen at random. In practice we
choose(Nf −2) entries to be zero and the two non-zero entries to be those that correspond
to what we call the primary functions for columnj . These primary functions for the open
channels are the sine- and cosine-like JWKB solutions that correspond to channelj .
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4. Illustrative calculations

To give an indication of the accuracy of the improved method, we consider three typical
test cases which we will denote case A, case B and case C. Case A is a seven channel
e−–CIII scattering problem, which is the test case used by Burke and Noble (1995). Case B
is a 19 channel e−–He case used as a test case by Rudge (1984). This case is significantly
more complex than others in the literature and it provides a stringent test in that there are
many nearly degenerate channel groups due to the inclusion of fine structure levels, and
many channels close to threshold. Case C is a 31 channel e−–H test case that we have
generated, which provides a demonstration of the ability of the improved method to handle
cases containing a large number of channels.

The quantityε, defined as

ε = 1

NsN ′pN

N∑
i=1

Ns∑
j=1

N ′p∑
k=1

|(L0+ V)Fij (rk)| (34)

can be used as a measure of the average error of the calculation. The number of points,
N ′p, in each subrange was chosen typically to be 500. The accuracy of the calculation is
therefore illustrated in each case by plottingε as a function ofr.

In figures 1–3, log10(ε) is plotted in the rangeRin 6 r 6 500 whereRin is the lowest
value ofR1. This is the innermost part of the region where the scattering equations are

Figure 1. Plot of log10(ε) as a function ofr, case A.

Figure 2. Plot of log10(ε) as a function ofr, case B.
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Figure 3. Plot of log10(ε) as a function ofr, case C.

to be solved. The number of Chebyshev polynomials used in the basis expansion was six
for each channel in all cases. The appearance of very localized minima of log10(ε) on the
figures is due to the proximity of collocation points at these values ofr. At the collocation
points the linear equations are satisfied identically to machine accuracy, giving a negligible
average error.

In order to compare our method with other calculations theK-matrix of atomic scattering
theory (cf Rudge and Tiernan 1994) was generated for cases A and B using our code, the
code of Rudge (1984) and the code of Burke and Noble (1995). In all cases the average
value of|δKij /Kij | in theK-matrices generated by our code compared with those generated
by the two other codes was less than 1%, indicating excellent agreement.

The speed of the iteration procedure depends on the values ofr, but is in general rapid
requiring about four or five iterations to achieve accurate solutions at the collocation points.
TheQZ algorithm works extremely well. Care has to be exercised, as in any calculation
of this type, to ensure that the basis is in a numerical sense linearly independent over any
particular range.

It can be seen from the figures that high accuracy can be gained in all cases with
relatively small numbers of basis functions, even in the regions where the calculation is
numerically more difficult and where the number of channels is large. Further details are
given in Tiernan (1996).

5. Concluding remarks

We have written and tested a computer code for determining, in analytic form, the solutions
of sets of coupled differential equations. We find that we can deal with many more equations
than previously without storage problems and that the accuracy of the method is high. We
find satisfactory agreement between the results generated by the present method and those
used as test cases in the literature by other authors.
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